
Introduction to Mathematical
Operators

• * / % + - are the mathematical operators

• * / % have a higher precedence than + or -
double myVal = a + b % d – c * d / b;

• Is the same as:
double myVal = (a + (b % d)) –

((c * d) / b);

Statements & Blocks

• A simple statement is a command terminated by a
semi-colon:

name = “Fred”;

• A block is a compound statement enclosed in curly
brackets:

{

name1 = “Fred”; name2 = “Bill”;

}

• Blocks may contain other blocks

Flow of Control

• Java executes one statement after the other in the
order they are written

• Many Java statements are flow control statements:

Alternation: if, if else, switch

Looping: for, while, do while

Escapes: break, continue, return

If – The Conditional Statement

• The if statement evaluates an expression and if that
evaluation is true then the specified action is taken

if (x < 10) x = 10;

• If the value of x is less than 10, make x equal to 10

• It could have been written:
if (x < 10)

x = 10;

• Or, alternatively:
if (x < 10) { x = 10; }

Relational Operators

== Equal (careful)

!= Not equal

>= Greater than or equal

<= Less than or equal

> Greater than

< Less than

If… else

• The if … else statement evaluates an expression and performs
one action if that evaluation is true or a different action if it is
false.
if (x != oldx) {

System.out.print(“x was changed”);
}
else {
System.out.print(“x is unchanged”);

}

Nested if … else

if (myVal > 100) {
if (remainderOn == true) {

myVal = mVal % 100;
}
else {
myVal = myVal / 100.0;

}
}
else
{
System.out.print(“myVal is in range”);

}

else if

• Useful for choosing between alternatives:
if (n == 1) {
// execute code block #1

}
else if (j == 2) {
// execute code block #2

}
else {
// if all previous tests have failed,
execute code block #3

}

A Warning…

WRONG!
if(i == j)

if (j == k)
System.out.print(

“i equals k”);
else
System.out.print(
“i is not equal
to j”);

CORRECT!
if(i == j) {
if (j == k)
System.out.print(

“i equals k”);
}
else
System.out.print(“i
is not equal to j”);
// Correct!

The switch Statement
switch (n) {
case 1:
// execute code block #1
break;
case 2:
// execute code block #2
break;
default:
// if all previous tests fail then
//execute code block #4
break;

}

The for loop

• Loop n times
for (i = 0; i < n; n++) {
// this code body will execute n times
// ifrom 0 to n-1

}
• Nested for:

for (j = 0; j < 10; j++) {
for (i = 0; i < 20; i++){
// this code body will execute 200 times

}
}

while loops

while(response == 1) {
System.out.print(“ID =” + userID[n]);
n++;
response = readInt(“Enter “);

}

What is the minimum number of times the loop is executed?

What is the maximum number of times?

do {… } while loops

do {
System.out.print(“ID =” + userID[n]);
n++;
response = readInt(“Enter ”);

}while (response == 1);

What is the minimum number of times the loop is executed?

What is the maximum number of times?

Break

• A break statement causes an exit from the
innermost containing while, do, for or switch
statement.
for (int i = 0; i < maxID, i++) {
if (userID[i] == targetID) {
index = i;
break;
}

} // program jumps here after break

Continue

• Can only be used with while, do or for.

• The continue statement causes the innermost loop to start
the next iteration immediately
for (int i = 0; i < maxID; i++) {
if (userID[i] != -1) continue;
System.out.print(“UserID ” + i + “ :” +
userID);

}

Application & Scope

• These if and else statements are very easy to
use and user friendly.

• It help in complex statements.

• It can created nested of statements.

• These conditions use in C, Java, C++ or many
oops oriented application.

